引用文献

 

下記8件は、章を問わず随所で引用した。

Janvier, Philippe. Early Vertebrates. Oxford Science Pub. (1996).

Long, John A. The Rise of Fishes. 2nd edition. The Johns Hopkins University Press. (2011).

エドウィン・コルバート「脊椎動物の進化」 田隅本生訳 筑紫書館 (1991).

ニール・シュービン 「ヒトの中の魚、魚の中のヒト」 垂水雄二訳 早川書房 (2008).

アルフレッド・ローマー「脊椎動物の歴史」 川島誠一郎訳 (1981).   

カール・ジンマー 「水辺で起きた大進化」 渡辺政隆訳 早川書房 (2000).

ジェニファ・クラック 「手足を持った魚たち」 池田比沙子訳 講談社現代新書 (2000).

奥野良之助 「魚 陸に上がる」  創元社 (1995)

 

1章1地球環境と生態系

Ahlberg, P. E. Birth of the jawed vertebrates. Nature 457, 26 February, 1094-1095 (2009).

(48) Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B, 365, 3667-3669 (2010).

Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24(1), 26-53 (2007).

Berner, R. A. Geocarbsulf: a combined model for Phanerozoic atmosphere O2 and CO2. Geochim Cosmochim Ac 70, 5653-5664 (2006).

Blair, J. E. & Hedges, S. B. Molecular phylogeny and divergence times of deuterostome animals. Mol Biol Evol 22, 2275-2284 (2005). 

Botella, H. et al. Jaws and teeth of the earliest bony fish. Nature 448, 2 August, 583-586 (2007).

Brazeau, M. D. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457, 15 January, 305-308 (2009).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2006).

Clement, C. et al. Devonian tetrapod from western Europe. Nature 427, 29 January, 412-413 (2004).

Coates, M. I. et al. Ever since Owen: changing perspective on the early evolution of tetrapods. Annu Rev Ecol Evol Syst 39, 571-592 (2008).

Degan S. A paleontological perspective of vertebrate origin. Chinese Science Bulletin 48(8), 725-735 (2003).

Donoghue P. C. J & Benton, M. J. Rocks and clocks: calibrating the tree of life using fossils and molecules. TREND in ecology and evolution 22(8), 424-431 (2007).

Dosey-Akbulut, M. Is there any phylogenetic relationship between teleosts and the elasmobranches? African J Biotechnology 5(4), 318-320 (2006).

Hallstrom, B. M. & Janke, A. Gnathostome phylogenomics utilizing lungfish EST sequences. Mol. Biol. Evol. 26(2), 463-471 (2009).

Hedges, S. B. & Kumar, S. Genomic clock and evolutionary timescales. TREND in Genetics 19(4), 200-207 (2003).

Inoue, K. et al. Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. PNAS 100(17), 19 August, 10079-10084 (2003).

Johanson, Z. et al. Oldest coelacanth, from the early Devonian of Australia. J. Pro. R. Soc. Bio. Lett. 443-446 (2006).

Krichner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177-180 (2000).

Krug, A. Z. & Patzkowsky, M. E. Rapid recovery from the late Ordovician mass extinction. PNAS 101(51), December 21, 17605-17610 (2004).

Kumer, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917-920 (1998).

Metscher, B. D. et al. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish.: implications for the origin of tetarpod limbs. Evol. Dev. 7(3), 186-195 (2005).

Putnem, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 19 June, 1064-1072 (2008).

Qu, Q-M. et al. Silurian atmospheric O2 changes and the early radiation of gnathostomes. Paleoworld 19, 146-159 (2010).

Qiao, T. & Zhu, M. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros. Science China 53(12), 1836-1848 (2010).

Ruta, M. et al. Evolutionary patterns in early tetrapods. Proc R Soc B 273, 2107-2118 (2006).

Sallan, L. C. & Coates, M. L. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. PNAS 107(22), 1 June, 10131-10135 (2010).

Sanson, I. J. et al. Scales of thelodont and shark-like fishes from the Ordovician of Colodado. Nature 379, 628-630 (1996).

Sheehan, P. M. The late Ordovician mass mass extinction. Annu. Rev. Earth Planet. Sci. 29, 331-324 (2001).

Shu, D. –G. et al. Head and backbone of the early Cambrian vertebrate Hailouichthys. Nature 421, 30 January, 526-529 (2003).

Smith, M. P. et al. The spatial and temporal diversification of Early Palaeozoic vertebrates. Geological Society of London 194, 69-83 (2002).

Smithson, T. R. et al. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. PNAS March 5, (2012). doi: 10.1073/pnas.1117332109

Sonkoly, E. et al. Novel regulators involved in the pathogenesis of psoriasis? PloS ONE. July Issue 7, e610 (2007).

Trotter, J. A. et al. Did cooling oceans trigger Ordovician biodiversification? Evidence from Conodont Thermomety. Science 321, 25 July, 550-554 (2008).

Vandenbroucke, T. R. et al. Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse. PNAS 107(34), 24 Aug. 14983-14986 (2010).

Yamanoue, Y. et al. The mitochondrial genome of spotted green pufferfsih and divergene time estimation among model organisms in fishes. Genes Genet Syst 81, 29-39 (2006).

Zhang, P. et al. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54(3), 391-400 (2005).

Zhao, W. & Zhu, M. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Science Direct Paleoworld 19, 4-26 (2010).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).

Zhu, M. & Yu, X. Stem sarcopterygians have primitive polybasal fin articulation. Biol Lett 5, 372-375 (2009).

Zhu, M. & Ahlberg, P. E. The origin of the internal nostril of tetrapods. Nature 432, 4 November, 94-97 (2004).

Zhu, M. & Yu, X. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418, 15 August, 767-770 (2002).

Zhu, M. et al. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 18 February, 607-610 (1999).

 

熊澤峰夫他「全地球史解読」 東京大学出版会 2002

丸山茂徳&磯崎行雄「生命と地球の歴史」 岩波新書 1998

 

1章2酸素分圧変化と進化

Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B, 365, 3667-3669 (2010).

Belcher, C. M. et al. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 Mys. PNAS 107(52), 22448-22453 (2010).

Berner, R. A. Geocarbsulf: a combined model for Phanerozoic atmosphere O2 and CO2. Geochim Cosmochim Ac 70, 5653-5664 (2006).

Berner, R. A. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426, 323-326 (2003).

Berner, R.A. et al. Isotope fractionation and atmospheric oxygen. Science 287(5458), 1630-1633 (2000).

Berner, R. A. Atmospheric oxygen over Phanerozoic time. PNAS 96, 10955-10957 1999.

Bergman, N. M. et al. A new model of biogeochemical cycling over Phanerocoic time. Am J Sci 304(5), 397-437 (2004).

Butterfield, N. J. Was the Devonian radiation of large predatory fish a consequence of rising atmospheric oxygen concentration? PNAS 108(9), 1 March, E28 (2011).

Canfield, D. E. The early history of atmospheric oxygen. Ann. Rev. Earth Planet Sci. 33, 1-36 (2005).

Catling, D. C. et al. Anaerobic methanotrophy and the rise of atmospheric oxygen. Phil. Trans. R. Soc. A 365, 1867-1888 (2007).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2007).

Clement, A. M. & Long, J. A. Air-breathing adaptation in a marine Devonian lungfish. Biol Lett 6, 509-512 (2010).

Cockell, C. S. & Raven, J. A. Ozone and life of the Archaean earth. Phil Trans R Soc A 365, 1889-1901 (2007).

Cockell, C. S. & Horneck, G. The history of the UV radiation climate of the earth-theoretical and space-based observation. Photochem Photobiol 73(4), 447-451 (2001).

Cockell, C. S. Ultraviolet radiation and the photobiology of earth’s early oceans. Orig Life Evol Bioph 30(5), 467-499 (2000).

Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. PNAS 107(42), 19 Ocober, 17911-17915 (2010)

Dahl, T. W. et al. Reply to Butterfield: The Devonian radiation of large predatory fish coincided with elevated atmospheric oxygen levels. PNAS 108(9), 1 March, E29 (2011).

Dudley, R. The evolutionary physiology of animal flight. Annu Rev Physiol 62, 135-155 (2000).

Dudley, R. Atmosperic oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Expt Biol 201, 1043-1050 (1998).

Geroge, D & Blieck, A. Rise of the earliest tetrapods: an early Devonian origin from marine environment. PloS ONE 6(7), July, e22136, (2011).

Harrison, J. F. et al. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B doi:10.1098/rspb. (2010).

Holland, H. D. The oxygenation of the atmosphere and oceans. Phil Trans R Soc B 361, 903-915 (2006).

Igamberdiev, A. U. & Lea, P. J. Land plants equilibrate O2 and CO2 concentrations in the atmosphere. Photosyth Res. 87(2), 177-194 (2006).

Kirschvink, J. L. & Kopp, R. E. Paleoproterozic icehouses and the evolution of oxygen mediating enzymes. Phil. Trans. Roy. Soc. B363, 2755-2765 (2008).

Kirschvink, J. L. & Raub, T. D. A methane fuse for the Cambrian explosion: carbon cycles and true polar wander. C. R. Geoscience 335, 65-78 (2003).

Lenton, T. M. The coupled evolution of life and atmospheric oxygen. Auth: Rothschild. Evolution Planet Earth. Chap3: 33-52 (2002).

Niedzwiedzki, G. et al. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 7 January, 43-48 (2010).

Parnell, J. et al. Early oxygenation of terrestrial environment during the Mesoproterozoic. Nature 468, 290-293 (2010).

Payner, J. L. et al. Two-pase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. PNAS 106(1), 24-27 (2009).

Rouxel, O. J. et al. Iron isotope constrains on the Archean and Paleoproterozoic ocean redox state. Science 307, 1088-1091 (2005).

Qu, Q-M. et al. Silurian atmospheric O2 changes and the early radiation of gnathostomes. Paleoworld 19, 146-159 (2010).

Sahoo, S. K. et al. Ocean oxygenetion in the wake of the Marinoan glaciation. Nature 489, 27 September, 546-549 (2012).

Sato, T. et al. Redox conditions of deep ocean in the late Neoproterozoic- Early Paleozoic 57Fe Mossbauer spectroscopic study on deep-sea pelagic chert. J Geol Soc Japan 115(8), 391-399 (2009).

Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. PNAS 103(29), 10861-10865 (2006).

Sessions, A. L. et al. The continuing puzzle of the great oxidation event. Current Biolgy 19 R567-R574 (2009).

Shikazono, N. Earth’s surface environment of ArcheanCarbon dioxide, oxygen and methne partial pressures 岩石鉱物科学 37, 69-77 (2008).

Ward, P. et al. Confirmation of Romer’s gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrializaton. PNAS 103(45), 16818-16822 (2006).

 

2章 魚類から四肢類へ

Ahlberg, P. E. Birth of the jawed vertebrates. Nature 457, 26 February, 1094-1095 (2009).

Ahlberg, P. E. et al. Pelvic claspers confirm chondrichthyan-like internal fertilization in arthroidires. Nature 460, 13 August, 888-889 (2009).

Ahlberg, P. E. et al. Ventastega curonica and the origin of tetrapod morphology. Nature 453, 26 June, 1199-1204 (2008).

Ahlberg, P. E. Something fishy in the family tree. Nature 397, 18 February, 564-565 (1999).

Ahlberg, P. E. et al. The origin and early deiversificaton of tetrapod. Naure 368, 7 April, 507-514 (1994).

Ahlberg, P. E. A reexamination of sarcopterygian interrelationships, with special reference to the Poropepiformes. Zol J Linn Soc 103, 241-287 (1991).

Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B, 365, 3667-3669 (2010).

Benton, M. J. & Donoghue, P. C. J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24(1), 26-53 (2007).

Berner, R. A. Geocarbsulf: a combined model for Phanerozoic atmosphere O2 and CO2. Geochim Cosmochim Ac 70, 5653-5664 (2006).

Blieck, A. et al. The biostratigraphical and palaeogeographical framework of the earliest diversification of tetrapods. Geol Soc London Sped Publ 278, 219-235 (2007).

Botella, H. et al. Jaws and teeth of the earliest bony fishes. Nature 448, 2 August, 583-586 (2007).

Bottela, H.et al. Jaws and teeth of the earliest bony fishes Nature 448, 2 August, 583-586 (2007).

Brazeau, M. D. The braincase and jaws of a Devonian acanthodian and modern gnathostmome origins. Nature 457, 15 January, 305-308 (2009).

Brinkmann, H. et al. Nuclea protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. PNAS 101, 4900-4905 (2004).

Burrow, C.J. Separate evolutionary origin of teeth from evidence in fossil jawed vertebrates. Science 300, 1661 (2003).

Carr, R. K. et al. The phyllolepid placoderm Cowralepis mclachlani: insights into the evolution of feeding mechanisms in jawed vertebrates. J Morphol. 270(7), Jul. 775-804 (2009).

Carroll, R. L. Between water and land. Nature 437, 1 September, 38-39 (2005).

Carrol, R. Early land vertebrates. Nature 418, 4 July, 35-36 (2002).

Chambers, K. et al. Hox cluster duplication in the basal teleost Hiodon alosoides. Theory Biosci 128, 109-120 (2009).

Chiu, C. et al. Bichir HoxA cluster sequence reveals surprising trends in ray-finned fish genome evolution. Genome Research, doi/1.1101/gr.1712904 (2004).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2006).

Clack, J. A. An esly tetrapod from Romer’s gap. Nature 418, 4 July, 72-76 (2002).

Clack, J. A. Eucritta melanolimnetes from the early Carboniferous of Scotland, a stem tetrapod showing a mosaic of characteristics. Transactions of the Royal Society of Edinburgh, Earth Science. 92, 75-95 (2001).

Clement, A. M. et al. Devonian tetrapod from western Europe. Nature 427, 29 January, 412-413 (2004).

Cloutier, R. & Arratia, G. Early diversification of actinopterygians. Recent Adbances in the Origin and Early Radiation of Vertebrates. Arratia, G. et al. pp217-270, (2004) by Verlag Dr. Friedtich Pfell. Munchen, Germany-ISBN 3-89937-052-X

Cloutier, R. & Ahlberg, P. E. Interrelationships of fishes. 445-480 (1996).

Coates, M. Beyond the Age of Fishes. Nature 458, 26 March, 413-414 (2009).

Coates, M. I. et al. Ever since Owen: changing perspective on the early evolution of tetrapods. Annu Rev Ecol Evol Syst 39, 571-592 (2008).

Coate, M. I. The evolution of paired fins. Theory Biosci 122, 266-287 (2003).

Coates, M.I. et al. Fins to limbs: what the fossils say. Evolution & Development. 4(5), 390-401 (2002).

Cole, N. J. Insights from sharks: evolutionary and developmental models of fin development. Developmental Dynamics 236, 2421-2431 (2007).

Crow, K. D. et al. The “fish-specific” Hox cluster duplication is coincident with the origin of teleosts. Mol Biol Evol 23(1), 121-36 (2006).

Degan S. A paleontological perspective of vertebrate origin. Chinese Science Bulletin 48(8), 725-735 (2003).

Dosay-Akbulut, M. Is there any phylogenetic relationship between teleosts and the elasmobranches? African Journal of Biotechnology 5(4), 16 January, 318-320 (2006).

Eichenlaub, M. P. & Ettwiller, L. De Nove genesis of enhancers in vertebrates. PloS Biology 9(11), e1001188 (2011).

Esbaugh, A. J. & Tufts, B L. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respiratory Physiology & Neurobiology 154, 185-198 (2006).

Finn, R. N. & Kristoffersen, B. A. Vertebrate vitellogenin gene duplication in relation to the “3R Hypothesis” PloS Issue 1, e169 (2007).

Fraser, G. J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PloS Biology 7(2), 233-247 (2009).

Friedman, M. & Braseau, M. A reappraisal of the origin and basal radiation of the Osteichthys. J Vertebrate Paleontology 30, 35-56 (2010).

Friedman, M. Styloichthys as the oldest coelacanth. J Syst Palaeotol 5, 289-343 (2007).

Friedman, M. & Coates, M. I. A newly recognized fossil coelacanth highlights the early morphological diversification of the clade. Pro. R. Soc. B 273, 245-250 (2006).

Friedman, M. & Blom, H. A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. J Paleontology 80, 1186-1204 (2006).

Goldberg, E. E. et al. Diversity, endemism, and age distribution in macroevolutionary sources and sinks. Am Nat 165, 623-633 (2005).

Hedges, S. B. & Kumar, S. Genomic clock and evolutionary timescales. TREND in Genetics 19(4), April, 200-207 (2003).

Hoeg, S. et al. Phylogenetic timing of the fish-specific genome duplication correlates with the Diversification of teleost fish. J. Mol. Evol. 59, 190-203 (2004).

Inoue, K. et al. Four functionally distinct C-type natriuretic peptides found in fish reveal evolutionary history of the natriuretic peptide system. PNAS 100(17), 19 August, 10079-10084 (2003).

Inoue, J. G. et al. The mitochondrial genome of Indonesian coelacanth and divergence time estimation between the two coelacanths. Gene 349, 227-235 (2005).

Janvier, P. & Clement, G. Muddy tetrapod origins. Nature 463, 7 January, 40-41 (2010).

Janvier, P. Wandering nostrils. Nature 432, 4 November, 23-24 (2004).

Johanson, Z. et al. Oldest coelacanth, from the early Devonian of Australia. J. Pro. R. Soc. Bio. Lett. 443-446 (2006).

Kassahn, K. et al. Evolution of gene function ad regulatory control after whole-genome duplication: comparative analysis in vertebrates. Genome Reseach 19, 1404-1418 (2009).

Kumer, S. & Hedges, S. B. A molecular timescale for vertebrate evolution. Nature 392, 917-920 (1998).

Kuraku, S. & Meyer, A. The evolution and maintenance of Hox gene clusters in vertebrates and the teleost- specific geneme duplication. Int J Dev Biol 53, 765-773 (2009).

Lee, H. & Kimelman, D. A dominant-negative form of p63 is required for epidermal proliferation in Zebrafish. Developmental Cell. 2, 607-616 (2002).

Long, J. A. The Rise of Fishes. 2nd. The Johns Hopkis Univ. Press (2011).

Long, J. A. & Gordon, M. S. The greatest step in vertebrate history: a paleobiologial review of the fish-tetrapod transition. Physiol. Biochem. Zool. 77(5), Sept-Oct. 700-719 (2004).

Long, J. A. et al. Live birth in the Devonian period. Nature 453, 29 May, 650-652 (2008).

Long, J. A. et al. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457, 26 February, 1124-1127 (2009).

Maisey, J. G. & Anderson, M. E. A primitive chondrichthyan braincase from Early Devonian of South Africa. J Vert Paleontol 21, 702-713 (2001).

Maisey, J. G. Head and tails. Cladistics 2, 21-256 (1986).

Markey, M. J. & Marchll, C. R. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. PNAS 104(17), 7134-7138 (2007).

Marss, T. Andreolepis (Actinopterygii) in the upper Silulian of Northern Eurasia. Proc. Estonian Acad. Sci. Geol., 50(3), 174-189 (2001).

Meyer, A. & Van de Peer, Y. From 2R to 3R: evidence for a fish-specific genome duplication (FSGD). Bioessays 27(9), 937-945 (2005).

Meyer, A. Molecular evidence on the origin of tetrapods and the relationships of the coelacanth. Trends Ecol Evol 35, 93-101 (1995).

Miller, R. F. et al. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425, 2 October, 501-504 (2003).

Paton, R. L. et al. An amniote-like skeleton from Early Carboniferous of Scotland. Nature 398, 8 April, 508-513 (1999).

Pavoni, K. et al. Duplication of the dystroglycan gene in most branches of teleost fish. BMC Molecular Biology 8(34), 1-10 (2007).

Perry, S. F. et al. Which came first, the lung or the breath? Comparative Biochemistry and Physiology Part A 129, 37-47 (2001).

Qu, Q-M. et al. Silurian atmospheric O2 changes and the early radiation of gnathostomes. Paleoworld 19, 146-159 (2010).

Rucklin, M. et al. Development of teeth and jaws in the earliest jawed vertebrates. Nature 491, 29 November, 748-751 (2012).

Sato, Y. et al. Temporal pattern of less/persistence of duplicate genes ivolved I signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Molecular Biology 9(127), 1-14 (2009).

Sato, Y. & Nishida, M. Post-duplication charge evolution of phosphoglucose isomerases in teleost fishes through weak selection on many amino acid sites. BMC Evol Biol 7(204), doi: 101186/1471-2148-7-204 (2007).

Semon, M. & Wolfe, K. H. Rearrangement rate following the whole-genome duplication in teleosts. Mol. Biol. Evol. 24(3), 860-867 (2007).

Shan, Y. & Gras, R. 43 genes support the lungfish-coelacanth grouping related to the closest living relative of tetrapods with the Bayesian method under the coalescence model. BMC Research Notes, 4(49), (2011).

Shu, D. –G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 30 January, 526-529 (2003).

Shu, D-G. et al. Lower Cambrian vertebrates from south China. Nature 402, 4 November, 42-46 (1999).

Schultze, H.-P. Comparison of hypotheses on the relationships of sarcopterygians, Syst Biol 43, 155-173 (1994).

Smith, M. M. & Johanson, Z. Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science 299, 21 February, 1235-1236 (2003).

Smith, M. P. et al. The spatial and temporal diversification of Early Palaeozoic vertebrates. Geological Society of London 194, 69-83 (2002).

Smithson, T. R. et al. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. PNAS March 5, (2012). doi: 10.1073/pnas.1117332109

Springer, V. G. Are the Indonesian and western Indian Ocean coelacanths conspecific: a prediction. Environmental Biology of Fishes, 54(4): 453-456 (1999).

Sonkoly, E. et al. Novel regulators involved in the pathogenesis of psoriasis? PloS ONE. July Issue 7, e610 (2007).

Thatcher, E. J. et al. Regulation of Zebrafish fin regeneration by microRNAs. PNAS. 105, Nov. 25, 18384-18389 (2008).

Trinajstic, K. et al. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. J. Pro. R. Soc. Bio. Lett. 3, 197-200 (2007).

Uyeno, T. & Y. Yabumoto. Origin of extent coelacnths. The Coelacanth, Fathom the Mystery 2007, Aquamarine Fukushima. pp.24-26 (2008).

Qiao, T. & Zhu, M. Cranial morphology of the Silurian sarcopterygian Guiyu oneiros. 53(12), 1836-1848 (2010).

Vandepoele, K. et al. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. PNAS 101(6), 1638-1643 (2004).

Venkatesh, B. et al. Survey sequencing and comparative analysis of the Elephant Shark (Callorihinchus milii) genome. PloS Biology, 5(4), April 0932-0942 (2007).

Venkatesh, B. et al. Molecular synapomorphies resolve evolutionary relationship of extant jawed vertebrates. PNAS 98, 11382-11387 (2001).

Xiaobo, Y. et al. The origin and diversification of Osteichthys and Sarcopterygians: rare Chinese fossil findings advance research on key issues of evolution. Bulletin of the Chinese Academy Sciences 24(2), 71-75 (2010).

Westneat, M. et al. The horizontal septum: mechanisms of force transfer in locomotion of scombrid fishes (Scombridae, Perciformes). J. Morphology 217, 183-204 (1993).

Yan, J. & Cai, Z. Molecular evolution and functional divergence of the Cytochroe p450 (CYP3) family in actinopterygii. PloS ONE 5(12), e1427 (2010).

Yokobori, A. I. et al. Relationship among coelacanths, lungfishes, and tetrapods. J. Mol Evol 38, 602-609 (1994).

Yamanoue, Y. et al. The mitochondrial genome of spotted green pufferfsih and divergene time estimation among model organisms in fishes. Genes Genet Syst 81, 29-39 (2006).

Young, G. C. Placoerm (Armored fish): dominant vertebrates of Devonian period. Annual Review of Earth and Planetary Sciences 38 523-550 (2010).

Young, G. C. Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes. Proc.R. Sci. Biol. Lett. 4, 110-114 (2008).

Yu, X. et al. The origin and diversification of Osteichthyans and Sarcopterygians: rare Chinese fossil findings advance research on key issues of evolution. Paleoichthyology 24(2), 71-75 (2010).

Zalc, B. et al. The origin of the myelination program in vertebrates. Curr. Biol. 24 June, 18(12), R511-512 (2008).

Zardoya, R. & Meyer, A. The complete DNA sequence of the mitochondrial genome of a ‘living fossil’ the coelacanth. Genetics 146, 995-1010 (1997).

Zardoya, R. et al. Searching for the closest living relatives of tetrapods through evolutionary analysis of mitochondrial and nuclear data. Mol Biol Evol 15, 506-517 (1998).

Zhang, G-R. et al. A basal antiarch (placoderm fish) from Silurian of Qujing, Yunnan, China. ScienceDirect Paleoworld 19 129-135 (2010).

Zhang, P. et al. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54(3), 391-400 (2005).

Zhu, M. et al. Earliest known coelacanth skull extends the range of anatomically modern coelacanths to the Early Devonian. Nature Communikations 3, doi: 10 1038/ncomms1764, (2012).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).

Zhu, M. & Yu, X. Stem sarcopterygians have primitive polybasal fin articulation. Biol Lett 5, 372-375 (2009).

Zhu, M. et al. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441, 7-80 (2006).

Zhu, M. & Ahlberg, P. E. The origin of the internal nostril of tetrapods. Nature 432, 4 November, 94-97 (2004).

Zhu, M. & Yu, X. A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418, 15 August, 767-770 (2002).

Zhu, M. et al. A primitive sarcopterygian fish with an eyestalk. Nature 410, 1 March, 81-84 (2001).

Zhu, M. et al. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 18 February, 607-610 (1999).

Zhu, M, & Schultze, H-P. The oldest sarcopterygian fish. Lethaia 30, 293-304 (1997).

Zylberberg, L. et al. A microanatomical and histological study of the postcranial dermal skeleton in the Devonian sarcopterygian Eusthenopteron doordi. Acta Palaeontol Pol 55(3), 459-470 (2010).

 

松本正文編 「脊椎動物の多様性と系統」 バイオディバーシティ・シリーズ 7. 裳華房(2006).

 

第3章―1 骨格

Ahn, D. & Ho, R. K. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implication for the evolution of vertebrate paired appendages. Developmental Biology 322, 220-233 (2008).

Ahlberg, P. E. et al. Ventastega curonica and the origin of tetrapod morphology. Nature 453, 26 June, 1199-1204 (2008).

Ahlberg, P. E. & Clack, J. A. A firm step from water to land. Nature 440, 6 April, 747-749 (2006).

Ahlberg, P. E. et al. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 437, 1 September, 137-140 (2005).

Anderson, P. S. L. et al. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476, 11 August, 206-209 (2011).

Benton, M. J. Phylogeny of the major tetrapod groups: morphological data and divergence dates. J Mol Evol 30, 409-424 (1990).

Berman, D.S. Origin and early evolution of the amniote occipit. J Paleont 74, 938-956 (2000).

Boisvert, C. A. et al. The pectral fin of Panderichhys and the origin of digits. Nature 456, 4 December, 636-638 (2008).

Boisvert, C. A. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion. Nature 438, 29 December, 1145-1147 (2005).

Brazeau, M. D. & Ahlberg, P. E. Tetrapod-like middle ear architecture in a Devonian fish. Nature 439, 318-321 (2006).

Callier, V. et al. Contrasting developmental trajectories in the earliest known tetrapod forelimbs. Science 324, 17 April, 364-367 (2009).

Carrol, R. Early land vertebrates. Nature 418, 4 July, 35-36 (2002).

Cerny, R. et al. Evidence for the prepattern/cooption model of vertebrate jaw evolution. PNAS 107(40), 5 October, 17262-17267 (2010).

Chang, N-N. & Yu, X. Reexamination of the relationship of Middle Devonian Osteolepis—Fossil characters and their interpretations. American Museum of National Hisrory 3180, (1997).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2006).

Clack, J. A. et al. A uniquely specialized ear in a very early tetrapod. Nature 425, 4 September, 65-69 (2003).

Clack, J. A. An early tetrapod from ‘Romer’s Gap’. Nature 418, 72-76 (2002).

Clack, J. A. Euctitta melanolimnentes from the early Carboniferous of Scotland, a stem tetrapod showing a mosaic of characteristics. Transactions of the Royal Society of Edinburgh, Earth Sciences 92, 5-95 (2001).

Clement, A. M. et al. Devonian tetrapod from western Europe. Nature 427, 29 January, 412-413 (2004).

Coates, M. I. et al. Ever since Owen: Changing perspectives on the early evolution of tetrapods. Annu. Rev. Ecol. Evol. Syst. 39, 571-592 (2008).

Cole, N. J. Insights from sharks: evolutionary and developmental models of fin development. Developmental Dynamics 236, 2421-2431 (2007).

Daeschler, E. et al. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 6 April, 757-763 (2006).

Donoghue, P. C. et al. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J. Exp. Zool. B Mol. Dev. Evol., 306(3), 15 May, 278-294 (2006).

Donoghue, P. C. & Sansom, I. J. Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique 59, 352-372 (2002).

Donoghue, P. C. et al. Conodont affinity and chordate phylogeny. Biol. Rev. Camb. Philos. Soc. 75(2), 191-251 (2000).

Downs, J. P. et al. The cranial endoskeleton of Tiktaalik roseae. Nature 455, 16 October, 925-929 (2008).

Gai, Z. et al. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 18 August, 324-327 (2011).

Garcia, W. J. et al. The Hancock County tetrapid locality: A new Mississippian wetlands fauna from western Kentucky (USA). Geological Society of America. Special paper 399, 155-167 (2006).

Hecht, J. et al. Evolution of a core gene network for skeletogenesis in Choudates. PloS Genetics 4(3), e1000025 (2008).

Janvier, P. Homologies and evolutionary transitions in early vertebrate history. In Major Transition in Vertebrate Evolution. Eds. Anderson, J. S. Sues, H-D. pp.57-121 (2007). Bliimington: Indiana Uni. Press.

Kawasaki, K & Weiss, K, M. Evolutionary genetics of vertebrate tissue mineralization. J Expt Zool B Mol Dev Evol 306(3), 295-316 (2006).

Koyabu, D. et al. Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. PNAS 109(35), 14075-14080 (2012).

Langille, R. M. & Hall, B. K. Calcification of cartilage from the lamprey Petronyzon marinus. Acta Zool 74, 31-41 (1993).

Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53(4), 594-622 (2004).

Long, J. A. & Gordon, M. S. The greatest step in vertebrate history: a paleobiologial review of the fish-tetrapod transition. Physiol. Biochem. Zool. 77(5), Sept-Oct. 700-719 (2004).

Lu, J. & Zhu, M. An onychodont fish (Osteichthyes, Sarcopterygii) from the Early Devonian of China, and the evolution of the Onychodontiformes. Proc. R. S0c. B 277, 293-299 (2010).

Mallo, M. et al. The road to the vertebral formula. Int. J. Dev. Biol. 53, 1469-1481 (2009).

Markey, M. & Marshall, C. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. PNAS 104(17), 24 April, 7134-7138 (2007).

McCauley, D. W. SoxE, type collagen, and evolution of the chondrogenic neural crest. Zoolog. Sci. 25(10), 982-989 (2008).

Miller, R. F. et al. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425, 2 October, 501-504 (2003).

Nieuwenhuys, R. The forebrain of actinopterygians revisited. Brain Behav Evol 73(4), 229-252 (2009).

Pierce, S. E. et al. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486, 28 June, 523-526 (2012).

Ruta, M. et al. Early tetrapod relationships revised. Biol Rev 78, 251-345 (2003).

Sallan, L. C. & Coates., M. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. PNAS 107(22), 10131-10135 (2010).

Smith, M. M. & Cates, M I. The evolution of vertebrate dentitions. In Ahlberg, P. E. ed. Major events of early vertebrate evolution. Basingstoke, UK. Taylor & Francis. p 223-240 (2001).

Smith, M. M. & Cates, M I. Evolutionary origins of the vertebrate dentition. Eur J Oral Sci 10(1), 482-500 (1998).

Soukup, V. et al. Dual epithelial origin of vertebrate oral teeth. Nature 455, 9 October, 795-799 (2008).

Young, G. C. Early evolution of the vertebrate eye—fossil evidence. Evol. Educ. Outreach, 1, 427-438 (2008).

Wada, H. Origin and genetic evolution of the vertebrate skeleton. Zoolog. Sci. 27(2), 119-123 (2010).

Yu, J-K. et al. Insight from amphioxus geneme on the origin of vertebrate neural crest. Genome Research Letter, 1127-1132 (2008).

Zalc, B. & Colman, D. R. Origin of vertebrte success. Science 288, 271-272 (2000).

Zhang, G. et al. Evolution of vertebrate cartilage development. Curr. Top. Dev. Biol. 86, 15-42 (2009).

Zhang, G. & Cohn, M. J. Genome duplication and the origin of the vertebrate skeleton. Curr. Opin. Genet. Dev. 18(4), 387-393 (2008).

Zhang, G. & Cohn, M. J. Hagfish and lancelet fibrillar collagens reveal that type collagen-based cartilage evolved in stem vertebrates. PNAS 103(45), 16829-16833 (2006).

Zhang, P. et al. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54(3), 391-400 (2005).

Zhu, M. & Ahlbearg, P. E. The origin of the internal nostril of tetrapods. Nature 432, 4 November, 94-97 (2004).

Zhu, M. & Janivier, P. The histological structure of the endoskeleton in galeaspids. J Vert Paleontol 18, 650-654 (1998).

Zhu, M. & Yu, X. Stem sarcopterygians have primitive polybasal fin articulation. Biol Lett 5, 372-375 (2009).

 

第3章―2 歯

Botella, H. et al. Jaws and teeth of the earliest bony fishes. Nature 448, 583-586 (2007).

Burrow, C. J. Comment on “Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates” Science 300, 13 June, 1661b (2003).

Carr, R. K. et al. The phyllolepid placoderm Cowralepis meclachlani: . J Morphol. 270(7), 775-804 (2009).

Donoghue, P. C. et al. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J. Exp. Zool. B Mol. Dev. Evol., 306(3), 15 May, 278-294 (2006).

Donoghue, P. C. & Sansom, I. J. Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique 59, 352-372 (2002).

Downs, J. P. & Donoghue, P. C. Skeletal histology of Botheiolepis Canadensis and evolution of the skeleton at the origin of jawed vertebrates. J Morphol 270(11), 1364-1380(2009).

Fraser, G, J. et al. An ancient gene network is co-opted for teeth on old and new jaws. PloS Bilology 7(2), February, 0233-0247 (2009).

Gillis, J. A. & Donoghue, P. C. The homology and phylogeny of chondrichthyan tooth enameloid. Journal of Morphology 268, 33-49 (2007).

Huysseune, A. et al. Evolutionary and developmental origins of the vertebrate dentition. J Anat. 214, 465-476 (2009).

Huysseune, A. et al. Establishment, maintenance and modification of the lower jaw dentition of wild Atlantic salmon throughout its life cycle. J Anat. 211, 471-484 (2007).

Johanson, Z. & Smith, M. M. Placoderm fishes, pharyngeal denticles, and the vertebrate dentition. . J Morphol. 257(3), Sept, 289-307 (2003).

Kawasaki, K. The SCPP gene repertoire in bony vertebrates and granded differences in mineralized tissues. Dev. Genes Evol. 219, 147-157 (2009).

Kawasaki, K. & Weiss, K. M. SCPP gene evolution and the dental mineralization continuum. J. Dent. Res. 87(6), 520-531 (2008).

Kawasaki, K. et al. Gene duplication and the evolution of vertebrate skeletal mineralization. Cells Tissues Organs 186(1), 7-24 (2007).

Kawasaki, K. & Weiss, K. M. Evokutionary genetics of vertebrate tissue mineralization: the origin and evolution of the secretory calcium-binging phosphoprotein family. J. Exp. Zool. B Mol. Dev. Evol. 306(3), 15 May, 295-316 (2006).

Kawasaki, K. et al. Phenogenetic drift in evolution: The changing genetic basis of vertebrate teeth. PNAS 102(50), 13 December, 18063-18068 (2005).

Kawasaki, K. et al. Genetic basis for the evolution of vertebrate mineralized tissue. PNAS 101(31), 3 August, 11356-11361 (2004).

Koentges, G. Teeth in double trouble. Nature 455, 9 October, 747-745 (2008).

McCollum, M. & Sharpe, P. Evolution and development of teeth. J Anat. 199, 153-159 (2001).

Purnell, M. A. Feeding in extinct jawless heterostracan fishes and testing scenarious of early vertebrate evolution. Proc. Roy. Soc. Lond. B 269, 83-88 (2002).

Reif, W. –E. Evolution of dermal skeleton and dentition in vertebrates: the odontode-regulation theory. Evol Biol 15, 287-368 (1982).

Reisz, R. R. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution? J Exp Zool B Mol Dev Evol 306(3), 261-277 (2006).

Sansom, I. J. et al. A microvertebrate fauna from the Liandovery of South China. Trans R Soc Edinb 90, 255-272 (2000).

Sansom, I. J. et al. Scales of thelodont and shark-like fishes from the Ordovician. Nature 379, 628-630 (1996).

Smith, M. M. & Coates, M. I. Evolutionary origins of the vertebrate dentition. Eur J Oral Sci. 106 Suppl 1, 482-500 (1989).

Smith, M. M. Vertebrate dentitions at the origin of Jaws: Evol Dev. Jul-Aug, 5(4), 394-413 (2003).

Smith, M. M. & Johanson, Z. Separate evolutionary origins of teeth from evidence in fossil jawed vertebrates. Science 299, 21 February, 1235-1236 (2003).

Soukup, V. et al. Dual epithelial origin of vertebrate oral teeth. Nature 455, 9 October, 795-799 (2008).

Tucker, A. & Sharpe, P. The cutting-edge of mammalian development: how the embryo makes teeth. Nature Rev Genet 5, 499-508 (2004). 

Zerina, J. & Smith, M. M. Origin and evolution of gnatostome dentitions: Biol Rev Camb Philos Soc. 80(2), May, 303-45 (2005).

 

第3章―3 対鰭、および四肢

Abbasi, A. A. Evolution of vertebrate appendicular structures: insight from genetic and palaeontological data. Dev. Dyn. 240(5), May, 1005-1016 (2011).

Ahlberg, P. E. et al. Ventastega curonica and the origin of tetrapod morphology. Nature 453, 1199-1204 (2008).

Ahlberg, P. E. et al. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 437, 137-140 (2005).

Ahlberg, P. & Johanson, Z. Osteolepiforms and the ancestry of tetrapods. Nature 395, 792-794 (1998).

Ahn, D. & Ho, R. K. Tri-phasic expression of posterior Hox genes during development of pectoral fins in zebrafish: implication for the evolution of vertebrate paired appendages. Developmental Biology 322, 220-233 (2008).

Akimenko, M-A. et al. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347-357 (1995).

Benazet, J-D. & Zeller, R. Vertebrate lib development: moving from classical morphogen gradients to an integrated 4-dimensional patterning system. Cold Spring Harb Perspect Biol. 1, a001339 (2009).

Boisvert, C. A. et al. The pctoral fin of Panderichthys and the origin of digits. Nature 456, 636-638 (2008).

Boisvert, C. A. The pelvic fin and girdle of Panderichthys and the origin of tetarpod locomotion. Nature 438, 29 December, 1145-1147 (2005).

Carroll, S. B. Evolution at two levels: on genes and form. PloS Biol 3, e245 (2005).

Clement, G. et al. Palaeogeography: Devonian tetrapod from western Europe. Nature 427, 412-413 (2004).

Coates, M. I. et al. Using patterns of fin and limb phylogeny to test developmental-evolutionary scenarios. Novartis Found Symp. 284, 245-255 (2007).

Coates, M. I. The evolution of paired fins. Theory Biosci. 122, 266-287 (2003).

Coates, M. I. et al. Fins to limb: what the fossils say. EVOLUTION & DEVELOPMENT 4/5, 390-401 (2002).

Coates, M. I. & Cohn, M. Vertebrate axial and appendicuar patterning: the early development of paired appendages. AMER. Zool. 39, 676-685 (1999).

Caotes, M. I. The origin of vertebrate limbs. Dev. Suppl. 169-180 (1994).

Cohn, M. J. et al. Fibroblast growth factors induce additional limb development from the flank of chick embryo. Cell 80, 739-746 (1995).

Cole, N. J. et al. Development and evolution of the muscles of the pelvic fin. PloS Biology 9(11), e1001168 (2011).

Cole, N. J. Insights from sharks: evolutionary and developmental models of fin development. Developmental Dynamics 236, 2421-2431 (2007).

Daeshler, E. B. et al. A Devonian tetrapod-like fish and the devolution of the tetrapod body plan. Nature 440, 757-763 (2006).

Dahn, R. D. et al. Sonic hedgehog function in chondrichthyan fins and the evolution of appendage patterning. Nature 445, 18 January, 311-314 (2007).

Davis, M. C. et al. An autopdial-like pattern of Hox expression in the fins of a basal actinopterygian fish. Nature 447, 24 May, 473-476 (2007).

Deschamps, J. Ancestral and recently recruited global control of the Hox genes in development. Curr Opin Genet Dev 17, 422-427 (2007).

Draper, B. W. et al. Zebrafish fgf24 function with fgf8 to promote posterior mesodermal development. Development 130, 4639-4654 (2003).

Freitas, R. et al. Biphasic Hoxd gene expression in shark paired fins reveals an ancient origin of the distal limb domain. PloS ONE August(8), e754 (2007).

Freitas, R. et al. Evidence that mechanisms of fin development evolved in the midline of early vertebrates. Nature 442, 31 August, 1033-1037 (2006).

Friedman, M. & Brazeau, M. D. Sequences, stratigraphy and scenarios: what can we say about the fossil record of the earliest tetrapods? Pro. R. Soc. B 1-8 (2010).

Friedman, M. et al. First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs. Evolution & Development 9(4), 329-337 (2007).

Geroge, D & Blieck, A. Rise of the earliest tetrapods: an early Devonian origin from marine environment. PloS ONE 6(7), July, e22136, (2011).

Gillis, J. A. & Shubin, N. H. The evolution of gnathostome development: insight from chondrichthyan embryology. Genesis 47, 825-81 (2009).

Gillis, J. A. et al. Chondrogenesis and homology of the visceral skeleton in the little skate. J Morpol 270, 628-643 (2009b).

Gonzalez, F. et al. Transgenic analysis of Hoxd gene regulation during digit development. Dev Biol 306, 847-859 (2007).

Grandel, H. & Schulte-Merker, S. The development of the fins in the zebrafish. Mech Dev 79, 99-120 (1998).

Gross, M. K. et al. Lbx1 is required for muscle precurasor migration along a lateral pathway into limb. Development 127, 413-424 (2000).

Haines, L. & Currie, P. Morphogenesis and evolution of vertebrate appendicular muscle. J. Annt. 199, 205-209 (2001).

Hentschel, H. G. E. et al. Dynamial mechanisms for skeletal pattern formation in the vertebrate limb. Proc. R. Soc. Lond. B 271, 1713-1722 (2004).

Hinchliffe, J. R. Development basis of limb evolution. Int. J. Dev. Biol. 46, 835-845 (2002).

Janvier, P. & Clement, G. Muddy tetrpod origins. Naure 463, 7 January, 40-41 (2010)

Janvier,P. et al. Calcified cartilage in the paired fins of the osteostracan Escuminaspis laticeps from the late Devonian of miguasha with a consideration of the early evolution of the pectoral fin endoskeleton in vertebrates. J Vertebrate Paleontology 24(4), 773-779 (2004).

Johanson, Z. Evolution of paired fins and the lateral somatic frontier. J. Expt. Zool. B Mol. Dev. Evol. 314(5), 347-352 (2010).

Johanson, Z. et al. Fish fingers: digit homologues in sarcopterygian fish fins. J Exp Zool 308B, 757-768 (2007).

Kardong, K. V. Vertebrates, comparative anatomy, function, evolution. Oxford: Wm C. Brown, Oxford (1995).

Laurin, M. et al. Early tetrapod evolution. TREE 15(3), 118-124 (2000).

Long, J. A. et al. An exceptional Devonian fish from Australia sheds light on tetrapod origins. Nature 444, 9 Novemer. 199-202 (2006).

Ma, L-H. et al. Ancestry of motor innervation to pectoral fin and forelimb. Nature Communication|1:49|DOI: 10,1038/ncomms1045|(2010).

Mabee, P. & Noordsy, M. Development of the paired fins in the paddlefish Polyodon. J Morpho 261, 334-344 (2004).

Mabee, P. M. Developmental data and phylogenetic systematics: evolution of the vertebrate limb. Amer Zool 40, 789-800 (2000).

Markey, M. J. & Marchall, C. R. Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. PNAS 104(17), 7134-7138 (2007).

Marss, T. & Ritchie, A. Articukated thelodonts of Scotland. Trans R Soc Edinburgh Earth Sci 88, 143-195 (1998).

Metscher, B. D. et al. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finned fish.: implications for the origin of tetarpod limbs. Evol. Dev. 7(3), 186-195 (2005).

Miller, R. F. et al. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425, 2 October, 501-504 (2003).

Nelson, C. E. et al. Analysis of Hox gene expression in he hick limb but. Development 122, 1449-1466 (1996).

Neyt, C. et al. Evolutionary origins of vertebrate appendicular muscle. Nature 408, 2 November, 82-86 (2000).

Niedzwiedzki, G. et al. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 7 January, 43-48 (2010).

Rodoriguez-Esteba, C. et al. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814-818 (1999).

Ruvinsky, L. et al. The evolution of paired appendages in vertebrates: T-box genes in zebrafish. Dev Genes Evol 210, 82-91 (2000).

Sagai, T. et al. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development 132(4) 797-803 (2004).

Sansom, I. J. et al. A microvertebrate fauna from the Liandovery of South China. Trans R Soc Edinb 90, 255-272 (2000).

Schneider, I. et al. Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. PNAS 108(31), August 2,12782-12786 (2011).

Shu, D-G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42-46 (1999).

Shubin, N. H. et al. The pectral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature 440, 6 April, 764-771 (2006).

Shubin, N. H. et al. The early evolution of the tetrapod humerus. Science 304, 2 April, 90-93 (2004).

Shubin, N. The evolution of paired fins and the origin of tetrapod limbs. Evol Biol 28, 39-86 (1995).

Shubin, N. H. & Alberch, P. A morphogenetic approach to the origin and basic organization of the tetrapod limb. Evol Biol 1, 319-387 (1986).

(357) Smith, M. P. et al. The spatial and temporal diversification of Early Palaeozoic vertebrates. Geological Society, London 194, 63-93 (2002).

Sordino, P. et al. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 375, 678-681 (1995).

Spits, F. et al. Inversion-induced disruption of the Hoxd cluster leads to the partition of regulatory landscapes. Nat Genet 37, 889-893 (2005).

Spits, F. et al. A global control region difines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405-417 (2003).

Tabin, C. & Laufer, E. Hox genes and serial homology. Nature 361, 692-693 (1993).

Tamura, K. et al. The autopod: its formation during limb development. Dev Growth Differ 50, s177-s187 (2008).

Tanaka, M. et al. Fin development in a cartilaginous fish and the origin of vertebrate limbs. Nature 416, 4 Appril, 527-531 (2002).

Tarchini, B. & Doboule, D. Control of Hoxd genes collinearity during early limb development. Developmental Cell 10, 93-103 (2006).

Tarchini, B. et al. HoxD cluster scanning deletions identify multiple defects leading to paralysis in the mouse mutant lronside. Genes Dev 19, 2862-2876 (2005).

Villavicencio-Lorini, P. et al. Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J Clinical Inv 120(6), 1994-2004 (2010).

Wagner, G. P. & Chiu, C. H. The tetrapod limb: a hypothesis on its origin. J. Exp. Zool. 291(3), 226-240 (2001).

Yano, T. & Tamura, K. The making of differences between fins and limbs. J Anat doi: 10.1111/j.1469-7580.2012.01491.x (2012).

Yonei-Tamara, S et al. Competent stripes for diverse positons of limbs/fins in gnathostome embryos. Evol. Dev. 10(6), 737-745 (2008).

Yokouchi, Y. et al. Homeobox gene expression correlated with the bifurcation process of lomb cartilage development. Nature 353, 443-445 (1991).

Zakany, J. et al. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 304, 1669-1672 (2004).

Zhang, J. et al. Loss of fish actinotrichia proteins and the fin-to-limb transition. Nature 466, 8 July, 234-237 (2010).

Zhang, X.G. & Hou, X. G. Evidence for a single median fin-fold and tail in the Lower Cambrian vertebrate, Haikouichthys. J Evol Biol 17, 1162-1166 (2004).

Zhu, J. et al. Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution. PloS ONE 5(5), e10892 (2010).

Zhu M. et al. Fossil fishes from China provide first evidence of dermal pelvic girdle in osteichthyans. PloS ONE 7(4), e35103 (2012).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).

Zhu, M & Yu, X. Stem sarcopterygians have primitive polybasal fin articulation. Proc. R. Soc. Biol. Lett. 5, 372-375 (2009).

 

ブライアン・ホール 「進化発生学」 倉田滋訳 工作舎 (2001)

 

第3章―4 皮膚と鱗

Aberdam, D. et al. miRNA’s, ‘stemness’ and skin. Trends in Biochemical Sciences 33(12), 583-591 (2008).

Alibardi, L. Keratinization in the epidermis of amphibians and the lungfish: comparison with amniote keratinization. Tissue Cell 33(5), 439-449 (2001).

Allen, T. D. & Potten, C. S. Fine-structual identification and organization of the epidermal proliferative unit. J Cell Sci 15, 291-319 (1974).

Bakkers, J. et al.: “Zebrafish ΔNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the vental ectoderm” Developmental Cell. 2, 617-627 (2002).

Bemis, W. E. & Morthcutt, R. G. Skin and blood vessels of the snout of the Australian lungfish, Neocerarodus forsteri, and their significance for interpretiong the cosmine of Devonian lungfishes. Acta Zool 73, 115-139 (1992).

Bragulla, H. H. & Homberger D. G. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J. Anat. 214, 516-559 (2009).

Candi, E. et al. Visions & reflectionsp63 in epitherial development” Cell. Mol. Life Sci. 65, 3126-3133 (2008).

Candi, E. et al. TAp63 and ΔNp63 in cancer and epidermal development. Cell Cycle 6(3), 1 February, 274-285 (2007).

Candi, E. et al. The cornified envelope: a model of cell death in the skin. Nature 6, April, 328-340 (2005).

Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature. 446, 185-189(2007).

Dominique, L. G. et al. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebraish. Int J Dev Biol 48, 217-231 (2004).

Eckert, R. et al. Transglutaminase function in epidermis. J Investigative Dermatology 124, 481-492 (2005).

Ghazizadeh, S. & Taichman, L. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J. 20, 1215-1222(2001)

Guellec, D. L. et al. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int. J. Der. Biol. 48, 217-231 (2004).

Hitomi, K. Transglutaminases in skin epidermis. Eur J Dermatol 15(5), 313-319 (2005).

Janicke, M. et al. Foxi3 transcription factors and Notch signaling control the formation of skin ionocytes from epidermal precursors of the zebrafish embryo. Devlopmental Biology 307, 258-271 (2007).

Janis, C. M. et al. Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis. Proc r Soc B, doi:10.1098/rspb. (2012).

Jensen, U. B. et al. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labeling and lineage analysis. Development 126, 2409-2418 (1999).

Jones, P. H. et al. Sic transit Gloria : Farewell to the epidermal transit amplifying cell? Cell Stem Cell 1, 371-381 (2007).

Koester, I et al. p63 is the molecular switch for initiation of an epitherial stratification program. Genes Dev. 18, 126 (2004).

Lana, A. M. et al. miR-203 represses ‘stemness’ by repressing ΔNp63” Cell Death and Differentiation. 15, 1187-1195 (2008).

Lee, H. & Kimelman, D. A dominant-negative form of p63 is required for epidermal proliferation in Zebrafish. Developmental Cell. 2, 607-616 (2002).

Medison, K. C. Barrier function of the skin: “La Raison d’Etre” of the epidermis. J Investigative Dermatology 121, 231-241 (2003).

Meinke, D. K. A review of cosmine: its structure, development, and relationship to other forms of the dermal skeleton in osteoichthyans. J Vert Paleontol 4, 457-471 (1984).

Muller, E. J. et al. Outside-in signaling through integrins and cadherins: a central mechanism to control epidermal growth and differentiation? Soc Invest Dermatology 128, 501-516 (2008).

Potten, C. S. Epidermal cell production rates. J Investigative Dermatology 65(6), 488-500 (1975).

Pozzi, S. et al. Transcriptional network of p63 in Human keratinocytes. PloS One 4(3), e5008 (2009)

Proksch, E. et al. The skin: an indispensable barrier. Experimental Dermatology 17, 1063-1072 (2008).

Quickenden , T. I. & Irvin , J. A. The ultraviolet absorption spectrum of liquid water. J. Chem Phys. 72 , 4416-4428 (1980).

Ro, S. & Rannala, B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Experimental Dermatoglogy 14, 838-843 (2005).

Ro, S. & Rannala, B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO reports 5(9), 914-920 (2004).

Schempp, C. et al. Dermatology in the Darwin anniversary: Evolution of the ingegument. J German Soc Dermatology. 9(7), 750-757 (2009).

Sire, J-Y. et al. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J. Anat. 214, 409-440 (2009).

Sonkoly, E. et al. Protein kinase C-dependent upregulation of miR-203 induces the differentiation of Human keratinocytes. J. Inv. Dermatology 130, 124-134 (2010).

Sonkoly, E. et al. Novel regulators involved in the pathogenesis of psoriasis? PloS ONE. July Issue 7, e610 (2007).

Strachan, L. R. & Ghadially, R. Tiers of clonal organization in the epidermis: the epidermal proliferation unit revised. Stem Cell Rev 4, 149-157 (2008).

Thatcher, E. J. et al. Regulation of Zebrafish fin regeneration by microRNAs. PNAS. 105, Nov. 25, 18384-18389 (2008).

Truong, A. B. et al. p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev. 20, 3185-3197 (2006).

Vickaryous, M. K. & Sire, J-Y. The integumentary skeleton of tetrapods: origin, evolution, and development. J. Anat. 214, 441-464 (2009).

Yi, R. et al. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature. 452, 13 March, 225-230 (2008).

Zhu, M. et al. Meemannia eos, a basal sarcopterygian fish from the Lower Devonian of China-expanded description and significance. Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. D. K. Elliot, J. G. Maisey, X. Yu & D. Miao (eds.): pp.199-214 (2010).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).

Zhu, M. et al. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441, 4 May, 77-80 (2006).

Zylberberg, L. et al. A microanatomical and histological study of the postcranial dermal skeleton in the Devonian sarcopterygian Eusthenopteron foordi. Acta Palaeontol. 55(3), 459-470 (2010).

 

第3章―5 感覚系

3-5-1 視覚

Bailes, H. J. et al. Visual pigment in a living fossil, the Australian lungfish Neoceratodus forsteri. BMC Evolutionary Biology 7, 1-8 (2007).

Collin, S. P. et al. The evolution of early vertebrate photoreceptors. Phil. Trans. R. Soc. B 364, 2925-2940 (2009).

Collin, S, P. Early evolution of vertebrate photoreception: lessons from lampreys and lungfish. Integrative Zoology 4, 87-98 (2009).

Collin, S, P. & Collin, H, B. The corneal epithelial surface in the eyes of vertebrates: environmental and evolutionary influences on structure and function. J. Morphol. 267(3), 273-291 (2006).

Collin, S. P. et al. Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey. Visual Neuroscience 20, 119-130 (2003).

Franz-Odendaal, T. A. et al. Skeletal elements within teleost eyes and a discussion of their homology. J Morphol 267, 1326-1337 (2006).

Gehring, W. J. New perspectives on eye development and evolution of eyes and photoreceptors. Journal of Heredity 96(3), 171-184 (2005).

Hart, N. S. et al. Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology 8, 1-14 (2008).

Kelber, A. et al. Animal colour vision-behavioural tests and physiological concepts. Biol Rev 78, 81-118 (2003).

Parry, J. W. J. et al. Mix and match colour vision. Current Biology 15, 1734-1739 (2005).

Pilgrim, B. L. et al. A comparative study of the ocular skeleton of fossil and modern chondrichthyans. J. Anat. 214, 848-858 (2009).

Robinson, S. R. Early vertebrate colour vision. Nature 367, 121- (1994).

Suga, H. et al. Flexibly deployed Pax genes in eye development at the early evolution of animals demonstrated by studies on a hydrozoan jellyfish. PNAS 107(32), 14263-14268 (2010).

Shu, D-G. et al. Head and backbone of the Early Cambrian vertebrate Haikouichthys. Nature 421, 30 January, 526-529 (2003).

Shu, D-G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42-46 (1999).

Wistow, G. et al. γN-crystallin and the evolution of the βγ-crystallin superfamily in vertebrates. FEBS Journal 272, 2276-2291 (2005).

Wistow, G. et al. Lens crystalline: gene recruitment and evolutionary dynamism. Trends Biochem Sci 18, 301-306 (1993).

Young, G. C. Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes. Proc.R. Sci. Biol. Lett. 4, 110-114 (2008).

Young, G. C. Early evolution of the vertebrate eye-fossil evidence. Evol Edu Outreach 1, 427-438 (2008).

 

3-5-2 聴覚

Brazeau, M. D. & Ahlberg, P. E. Tetrapod-like middle ear architecture in a Devonian fish. Nature 439, 19 January, 318-321 (2006).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2006).

Clack, J. A. et al. A uniquely specialized ear in a very early tetrapod. Nature 425, 4 September, 65-69 (2003).

Clack, J. A. Patterns and processes in the early evolution of the tetrapod ear. Sixth International Congress of Vertebrate Morphology, July 21-26, Jena, Germany. Supported by DRF. (2001).

Fay, R. R. & Popper, A. N. Evolution of hearing in vertebrates: the inner ears and processing. Hear Res. 149(1-2), 1-10 (2000).

Fritzsch, B. et al. Molecular evolution of the vertebrate mechanosensory cell and ear. Int. J. Dev. Biol. 51, 663-678 (2007).

Hart, N. S. et al. Visual ecology of the Australian lungfish (Neoceratodus forsteri). BMC Ecology 8, 1-14 (2008).

Herbrand, H. et al. Two regulatory genes, cNkx5-1 and cPax2, show different responces to local signals during otc placode and vesicle formation in the chick embryo. Development 125, 645-654 (1998).

Koppl, C. Evolution of sound localization in land vertebrates. Curr. Biol. 19(15), R635-639 (2009).

Ladher, R. K. et al. Identification of synergistic signals initiating inner ear development. Science 290, 1965-1968 (2000).

Manley, G. A. An evolutionary perspective on middle ears. Hear Res. 263(1-2), 3-8 (2010).

Meng, J. et al. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 14 April, 181-185 (2011).

Popper, A. N. & Fay, R. R. Evolution of the ear and hearing: issues and questions. Brain Behav. Evol. 50(4), 213-221 (1997).

Streit, A. Origin of the vertebrate inner ear: evolution and induction of the otic placode. J. Anat. 199, 99-103 (2001).

 

3-5-3 嗅覚と味覚

Barreiro-Iglesias, A. et al. The gustatory system of lampreys. Brain Behav. Evol. 75, 241-250 (2010).

Braun, C. B. Scheiner organs: a new craniate chemosensoy modality in hagfishes. J Comp Neurol 392(2), 135-163 (1998).

Eisthen, H. L. Presence of the vomeronasal system in aquatic salamanders. Phil. Trans. R. Soc. Lond, B 355, 1209-1213 (2000).

Eisthen, H. L. Evolution of vertebrate olfactory systems. Brain Behav. Evol. 50(4), 222-233 (1997).

Eisthen, H. L. et al. Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls. Brain Behav Evol 44(2), 108-124 (1994).

Finger, T. E. Evolution of taste and solitary chemoreceptor cell systems. Brain Behav Evol 50(4), 234-243 (1997).

Freitag, J. et al. Olfactory receptors in aquatic and terrestrial vertebrates. J. Comp. Physiol. A 183(5), 635-650 (1998).

Hashiguchi, Y. et al. Evolutionary patterns and selective pressures of odorant / pheromone receptor gene families in teleost fishes. PloS ONE 3(12), e4083 (2008).

Hashiguchi, Y. & Nishida, M. Evolution of trace amine-associated receptor (TAAR) gene family in vertebrates: lineage-specific expressions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol. Biol. Evol. 24(9), 2099-2107 (2007).

Janvier, P. Wandering nostrils. Nature 432, 4 November, 23-24 (2004).

Jermakowicz, W. J. et al. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae). J. Morphol. 261(2), 225-248 (2004).

Korcching, S. The molecular evolution of tereost olfactory receptor gene families. Results Probl. Cell Differ. 47, 37-55 (2009).

Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome. Biol. Vol., 34-44 (2009a).

Niimura, Y. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genome contents. Hum. Genomics 4(2), 107-118 (2009b)

Niimura, Y. & Nei, M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. PNAS 102, 6039-6044 (2005).

Raile, F. et al. Opsins and clusters of sensory G-protein coupled receptors in the sea urchin genome. Dev Biol 300, 461-475 (2006).

Shi, P & Zhang, J. Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertories in the vertebrate transition from water to land. Genome Research Letter, 166-174 (2007).

Wenry, E. G. & Zhang, J. Distinct evolutionary patterns between chemoreceptors of 2 vertebrate olfactory systems and the differential tuning hypothesis. Mol. Biol. Evol. 25(8), 1593-1601 (2008).

 

岩堀修明「図解・感覚器の進化」 講談社ブルーバクス (2011).

 

第3章―6 循環系

Antoon, F. M. et al. Cardiac chamber formation: Development, genes, and evolution. American Physiological Society 83, 1223-1267 (2003).

Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B, 365, 3667-3669 (2010).

Berner, R. A. Geocarbsulf: a combined model for Phanerozoic atmosphere O2 and CO2. Geochim Cosmochim Ac 70, 5653-5664 (2006).

Blieck, A. & Turner, S. Global Ordovician vertebrate biogeography. Paleogeography, Palaeoclimatology, Palaeoecology 195, 37-54 (2003).

Brainerd, E. L. & Owerkowicz, T. Functional morphology and evolution of aspiration breathing in tetrapods. Respir Physiol Neurobiol 154(1-2), 73-88 (2006).

Bray, A. A. The evolution of the terrestrial vertebrates. Philos Trans R Soc London B 309 289-322 (1985).

Clack, J. Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology 47, 510-523 (2007).

Clement, A. M. & Long, J. A. Air-breathing adaptation in a marine Devonian lungfish. The Royal Society Biol. Lett. 6, 509-512 (2010).

Colombo, L. et al. Aldosterone and the conquest of land. J Endocrinol Invest. 29(4), 373-379 (2006).

Daniels, C. B. et al. The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swim bladders. Physiol. Biochem. Zool. 77(5), Sep-Oct., 732-749 (2004).

Donoghue, P. C. J. et al. The origin and early evolution of chordate: molecular clocks and the fossil record. Smith, M. P. eds. Telling the Evolutionary Time. Taylor & Francis, London, pp190-223 (2003). NG?

Farmer, C. G. Evolution on the vertebrate cardio-pulmonary system. Annu. Rev. Physiol. 61, 573-592 (1999).

Farmer, C. G. “Did lungs and the intracardiac shunt evolve to oxygenate the heart in vertebrates?” Paleobiology 23, 359-372 (1997).

Fishelson, L. & Baranes, A. Ontogenesis and cytomorphology of the nasal olfactory organs in the Oman shark, lago omanensis in the Gulf of Aqaba, Red Sea. The Anatomical Record 249, 409-421 (1997).

Graham, J. B. & Lee, H. J. Breathing air in air: in what ways might extant amphibious fish biology relate to prevailing concept about early tetrapods, the evolution of vertebrate air breathing, and the vertebrate land transition? Physiol. Biochem. Zool. 77(5), Sep-Oct., 730-731 (2004).

Grigg, G. Studies on the Queensland lungfish. Aust J Zool 3, 413-421 (1965).

Ip, Y. K. et al. Five tropical air-breathing fishes, six different strategies to defend against ammonia toxicity on land. Physiol Biochem Zool 77(5), 768-782 (2004).

Janvier, P. Wandering nostrils. Nature 432, 4 November, 23-24 (2004).

Koshiba-Takeuchi, K. et al. Reptilian heart development and the molecular basis of cardiac chamber evolution. Nature 461, 3 September, 95-98 (2009).

Liem, K. F. Forms and function of lungs: the evolution of air-breathing mechanisms. American Zoologist 28,739-759 (1988).

Long, J. A. et al. Live birth in the Devonian period. Nature 453, 29 May, 650-652 (2008).

Liem, K. F. Form and function of lungs. Am Zool 28, 739-759 (1988).

Marjanovic, D. & Laurin, M. Fossils, Molecules, Divergene Times, and the Origin of Lissamphibians. Syst Biol 56(3), 36-388 (2007).

Nelson, J. S. Fishes of the World. John Wiley & Sons, Inc., (2006). ISBN 0-471-25031-7.

Perry, S. F. et al. Which came first, the lung or the breath? Comparative Biochemistry and Physiology Part A 129, 37-47 (2001).

Qu, Q-M. et al. Silurian atmospheric O2 changes and the early radiation of gnathostomes. Paleoworld 19, 146-159 (2010).

Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the earth system. Earth and Planetary Science Letters 234, 299-315, (2005).

Simoes-Costa, M. S. et al. The evolutionary origin of cardiac chamber. Dev Biol 277, 1-15 (2004).

Taylor, E. W. et al. Control of respiration in fish, amphibians and reptiles. Brazilian J Med Biol Res 43(5), 409-424 (2010).

Thomson, K. S. The environment and distribution of Paleozoic sarcopterygian fishes. Am J Sci 267, 457-464 (1969).

Wilson, R. J. A. et al. Evolution of air-breathing and central CO2/H+ respiratory chemosensitivity: new insight from an old fish? J. Exp. Biol. 203, 3505-3512 (2000).

Young, G. C. Placoderms : Dominant Vertebrates of the Devonian Period. Annual Review of Earth and Planetary Sciences. 38, 523-550 (2010).

Zalasiewicz, J. The Planet in a Pebble. Oxford University Press, 2010.

Zheng, W. et al. Comparative transcriptome analysis indicate molecular homology of zebrafish swimbladder and mammalian lung. PloS One 6(8), e24019 (2011).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).

Zhu, M. et al. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441, 4 May, 77-80 (2006).

Zhu, M. & Ahlberg, P. E. The origin of the internal nostril of tetrapods. Nature 432, 4 November, 94-97 (2004).

 

大石正道. 「プロテオミクスからみた脊椎動物心臓の進化―心房と心室の比較を中心にー.」比較内分泌学 34(130), 109-136 (2008).

ザラーシヴィッチ  「小石、地球の来歴を語る」 みすず書房 (2012).

松井正文編 「脊椎動物の多様性と系統」 バイオダイバーシティ・シリーズ 7 裳華房 (2006).

 

第3章―7 代謝系

Bartels, H. & Potter, I. C. Cellular composition and ultrastructure of the gill epithelium of larval and adult lampreys. Implication for osmoregulation in fresh and seawater. J. Expt. Biol. 207, 3447-3462 (2004).

Bray, A. A. The evolution of the terrestrial vertebrates: environmental and physiological considerations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 309(1138), 289-322 (1985).

Currie, S. & Edwards, S. L. The curious case of the chemical composition of hagfish tissues. Comp Biochem Physiol A157, 111-115 (2010).

Evans, D. H. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am. J. Physiol. Regul Integr. Comp. Physiol. 295, R704-R713 (2008).

Finn, R. N. & Kristoffersen. B. A. Vertebrate vitellogenin gene duplication in relation to the “3R hypothesis”: correlation to the pelagic egg and the oceanic radiation of teleosts. PloS ONE 1, January, e169 (2007).

Gilmour, K. M. & Perry, S. F. Carbonic anhydrase and acid-base regulation in fish. J. Expt. Biol. 212, 1647-1661 (2009).

Griffith, R. W. Freshwater or marine origin of the vertebrates? Comp. Biochem. Physiol. A Comp. Physiol. 87(3), 523-531 (1987).

Haskins, H. et al. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods. BMC Biochemistry 9(24), 1-15 (2008).

Hiroi, J. et al. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunoflorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotranspoter and CFTR anion channel. J. Expt. Biol. 208, 2023-2036 (2005).

Hong, J. et al. Carbamyl phosphate synthetase , an evolutionary intermediate in the transition between glutamine-dependent and ammonia-dependent carbamyl phosphate synthetases. J. Mol. Biol. 243(1), 131-140 (1994).

Hyodo, S. et. al. A facilitative urea transporter is localized in the renal collecting tubule of the dogfish Triakis scyllia. J. Exp. Biol. 207, 347-56 (2004).

Hwang, P-P. & Lee, T-H. New insights into fish ion regulation and mitochondrion-rich cells. Comparative Biochemistry and Physiology, PartA 148, 479-497 (2007).

Kaneko, T. Functional and morphological studies on ion- and osmoregulation in fish. Nippon Suisan Gakkaishi 72(4), 632-635 (2006).

Long, J. A. et al. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457, 26 February , 1124-1127 (2009).

McCormick, S. Endocrine control of osmoregulation in teleost fish. AMER. Zool., 41, 781-794 (2001).

McDonald, M. D. et al. The physiology and evolution of urea transport in fishes. J. Membrane Biol. 212, 93-107 (2006).

Nakada, T. et al. Ammonia secretion from fish gill depends on a set of Rh glycoproteins. The FAEB J. 21, 1067-1074 (2007).

Ogasawara, T, & Ichikawa, K. Osmoregulation and the environmental adaptation in the teleost fish: cells, individual, and behavior. Science J. Kanagawa Univ. 20(2), 311-314 (2009).

Parks, S. et al. Cellular mechanisms of Cl- transport in trout gill mitochondrion-rich cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1161-R1169 (2009).

Robertson, J. D. Osmotic and ionic regulation in cyslostomes. Chemical Zoology 8, 149-193 (1974).

Ruppert, E. E. Evolutionary origin of the vertebrate nephron. Amer. Zool., 34, 542-553 (1994).

Sakamoto, T. et al. Regulation of the ion-transporting mitochondrion-rich cell during adaptation of teleost fishes to different salinities. ZOOLOGICAL SCIENCE 18, 1163-1174 (2001).

Shahsavarani, A. et al. Characterization of a branchial epithelia calcium channel (ECaC) in freshwater rainbow trout (Oncorhynchus mykiss). J. Expt. Biol. 209, 1928-1943 (2006).

Shu, D. G. et al. Lower Cambrian vertebrates from south China. Nature 402, 42-46 (1999).

Takei, Y. Exploring novel hormones essential for seawater adaptation in teleost fish. Gen Comp Endocrinol 157, 3-13 (2008).

Thomson, K. S. The environment and distribution of Paleozoic sarcopterygian fishes. Am J Sci 267, 457-464 (1969).

Tingaud-Sequeira, A. et al. Structural and functional divergence of two fish aquaporin-1 water channels following teleost-specific gene duplication. BMC Evolutionary Biology 8(259), 1-18 (2008).

Tresguerres, M. et al. Chloride uptake and base secretion in freshwater fish: a transepithelial ion-transport metabolon? Physiol. Biochem. Zool. 79(6), Nov-Dec. 981-996 (2006).

Walsh, P.J. Evolution and regulation of urea synthesis and ureotely in (Batrachoidid) fishes. Annu. Rev. Physiol., 59, 299-323 (1997).

Weihrauch, D. et al. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J. Expt. Biol. 212, 1716-1730 (2009).

Wichard, W. and Eisenbeis, G, 1979 “Fine structural and histochemical evidence of chloride cells in stonefly larvae 3.” The floriform chloride cells. Aquatic Insects. 1, 185-191.

Wilkie, M. P. Ammonia excretion and urea handling by fish gills: present understanging and future research challenges. J. Expt. Zool. 293, 284-301 (2002).

Wright, P. & Wood, C. M. A new paradigm for ammonia excretion in aquatic animals: role of Phesus (Rh) glycoproteins. J. Expt. Biol. 212, 2003-2312 (2009).

 

内山実 他 尿素を利用する体液調節:その比較生物学―その2:魚類・両生類・爬虫類を中心に.比較内分泌学 35(134), 175-189 (2009)

内山実 他 脊椎動物の進化における陸生適応と腎臓の多様性―両生類を中心に.宇宙生物科学 14(1), 22-31 (2000).

広瀬茂久、中田勉 水環境で生きる化学 化学 2月号, 64-65 2006).

兵藤晋 他 尿素を利用する体液調節:その比較生物学―その1:軟骨魚類(サメ・エイ)を中心に.比較内分泌学 34(130), 137-145 (2008).

兵頭 , “サメ・エイの腎臓:そのユニークな尿細管構造”, 日本比較内分泌学会ニュース, Vol. 2003: 111_48-111_51, (2003) .

竹井祥郎.愛媛大学農学部ホームページ:生物の進化―脊椎動物編:硬骨海産魚類.の低浸透圧保持機能

 

第3章-8 生殖系

Ahlberg, P. E. Birth of the jawed vertebrates. Nature 457, 26 February, 1094-1095 (2009).

Barrett, P. M. Correlated progression and evolution of herbivory in non-avian dinosaurs. Journal of Vertebrate Paleontology. 17, 31A (1997).

Cote, S. et al. Vertebral development in the Devonian Sarcopterygian fish Eusthenopteron foordi and the polarity of vertebral evolution in non-amniote tetrapods. Journal of Vertebrate Paleontology 22 (3), 487–502 (2002).

Long, J. A. et al. Live birth in the Devonian period. Nature 453, 29 May, 650-652 (2008).

Muth, A. Water relations of desert iguana eggs. Physiol Zool 54, 441-451 (1981).

Romer, A. S. Tetrapod limbs and early tetrapod life. Evolution 12, 365-369 (1958).

Urashima, T. et al. The origin and early evolution of lactation, a new hypothesis proposed by Olav T. Oftedal. Milk Science 53(2), 81-100 (2004).

 

第4章 脊椎動物の陸棲化の過程

Abbasi, A. A. Evolution of vertebrate appendicular structures: insight from genetic and palaeontological data. Dev. Dyn. 240(5), May, 1005-1016 (2011).

Benton, M. J. The origins of modern biodiversity on land. Phil. Trans. R. Soc. B, 365, 3667-3669 (2010).

Botella, H. et al. Jaws and teeth of the earliest bony fishes. Nature 448, 2 August, 583-586 (2007).

Clack, J. A. Devonian climate change, breathing, and the origin of the tetrapod stem group. First International Congress of Respiratory Biology. August 14-16, in Bonn, Germany. 510-523 (2006).

Coates, M. I. et al. Ever since Owen: changing perspective on the early evolution of tetrapods. Annu Rev Ecol Evol Syst 39, 571-592 (2008).

Cole, N.J. et al. Development and evolution of the muscle of pelvic fin. PloS Biology 9(10), e1001168 (2011).

Farmer, C. G. Evolution on the vertebrate cardio-pulmonary system. Annu. Rev. Physiol. 61, 573-592 (1999).

Gillis, J. A. & Shubin, N. H. The evolution of gnathostome development: insight from chondrichthyan embryology. Genesis 47, 825-81 (2009).

Haskins, H. et al. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods. BMC Biochemistry 9(24), 1-15 (2008).

Inoue, J. G. et al. The mitochondrial genome of Indonesian coelacanth and divergence time estimation between the two coelacanths. Gene 349, 227-235 (2005).

Kasahara, M. et al. The medaka draft genome and insights into vertebrate genome evolution. Nature 447, 7 June, 714- 719 (2007).

Kassahn, K. et al. Evolution of gene function and regulatory control after WGD: comparative analyses in vertebrates. Genome Resach www.genome.org 1404-1418 (2009).

King, H. M. et al. Behavioral evidence for the evolution of walking and bounding before terrestriality in sarcopterygian fishes. PNAS 108(52), 21146-21151 (2011).

Laurin, M. The evolution of body size, Cope’s rule and the origin of amniotes. Syst Biol 53(4), 594-622 (2004).

Meng, J. et al. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 14 April, 181-185 (2011).

Neyt, C. et al. Evolutionary origins of vertebrate appendicular muscle. Nature 408, 2 November, 82-86 (2000).

Niedzwiedzki, G. et al. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 7 January, 43-48 (2010).

Sallan, L. C. & Coates, M. L. End-Devonian extinction and a bottleneck in the early evolution of modern jawed vertebrates. PNAS 107(22), 1 June, 10131-10135 (2010).

Sato, Y. & Nishida, M. Whole genome duplication and the evolution of fishes. Japan J Ichthyol 56(2), 89-109 (2009).

Schneider, I. et al. Appendage expression driven by the Hoxd Global Control Region is an ancient gnathostome feature. PNAS 108(31), August 2,12782-12786 (2011).

Swartz, B. A marine stem-tetrapod from Devonian of Western North America. PLoS ONE (3), e33683 (2012).

Vickaryous, M. K. & Sire, J-Y. The integumentay skeleton of tetrapods: origin, evolution, and development. J Anat 214, 441-464 (2009).

Zhang, P. et al. Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst. Biol. 54(3), 391-400 (2005).

Zhu, M. et al. Meemannia eos, a basal sarcopterygian fish from the Lower Devonian of China. Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Eliott, DK. Et al. eds: pp199-214 (2010).

Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 26 March, 469-474 (2009).